AlAA

RELIABILITY ASSESSMENT OF A
ROBUST DESIGN UNDER UNCERTAINTY
FOR A 3-D FLEXIBLE WING

Clyde R. Gumbert*
NASA Langley Research Center, Hampton, VA 23681

Gene J.-W. Hou'
Old Dominion University, Norfolk, VA 23529-0247

Perry A. Newman?

NASA Langley Research Center, Hampton, VA 23681

The paper presents reliability assessment results for the robust designs under uncer-
tainty of a 3-D flexible wing previously reported by the authors. Reliability assessments
(additional optimization problems) of the active constraints at the various probabilistic
robust design points are obtained and compared with the constraint values or target
constraint probabilities specified in the robust design. In addition, reliability-based sensi-
tivity derivatives with respect to design variable mean values are also obtained and shown
to agree with finite difference values. These derivatives allow one to perform reliability-
based design without having to obtain second-order sensitivity derivatives. However, an
inner-loop optimization problem must be solved for each active constraint to find the
most probable point on that constraint failure surface.

Introduction

In references 1 and 2, domains of uncertainty-based
design were classified with respect to the impact and
frequency of an event as shown in figure 1. We quote
several paragraphs from reference 1 regarding “robust
design” and “reliability-based design”:

“The two major classes of uncertainty-based design
problems are robust design problems and reliability-
based design problems. A robust design problem is
one in which a design is sought that is relatively in-
sensitive to small changes in the uncertain quantities.
A reliability-based design problem is one in which a
design is sought that has a probability of failure that
is less than some acceptable (invariably small) value.
The same abstract mathematical formulation can be
used to describe both robust design and reliability-
based design. However, their domains of applicability
are rather different.

“Figure 1 illustrates these domains. The two major
factors are the frequency of the event and the impact of
the event. No system is viable if everyday fluctuations
can lead to catastrophe. Instead, one would like the
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Fig. 1 Uncertainty-based design domains (cour-
tesy of Luc Huyse, taken from Ref. 1).

system to be designed such that the performance is in-
sensitive, i.e., robust, to everyday fluctuations. On the
other hand, one would like to ensure that the events
that lead to catastrophe are extremely unlikely. This is
the domain of reliability-based design. In both cases,
the design risk is a combination of the likelihood of an
undesired event and the consequences of that event.
An example of risk in the robust design context is the
likelihood that the aircraft design will fail to meet the
aerodynamic performance targets and [that the manu-
facturer] will consequently lose sales and perhaps even
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go bankrupt. An example of risk in the reliability-
based design context is the probability that a critical
structural component will fail, which could lead to the
loss of the vehicle or spacecraft, payload, and passen-
gers, and to potential lawsuits.

“As figure 2 illustrates, robust design is concerned
with the event distribution near the mean of the prob-
ability density function, whereas reliability-based de-
sign is concerned with the event distribution in the
tails of the probability density function. Obviously, it
is much more difficult to accurately characterize the
tail of a distribution than the center of the distri-
bution. An additional consideration in distinguishing
between robustness and reliability is that the mathe-
matical techniques used for solving robust design prob-
lems are considerably different from those used for
solving reliability-based design problems. The mathe-
matical methods for robust design procedures are less
well developed than those for reliability-based design
procedures, and this work is still largely confined to
academic studies.”
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Fig. 2 Reliability versus robustness in terms of
the probability density function (taken from Ref.
1).
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The recent interest in multidisciplinary analysis and
design for aerospace vehicles has indicated the need for
using uncertainty-based methods' in all design phases
from low to high fidelity. Three recent AIAA papers3™
are pertinent to the preceding discussion of reliabil-
ity versus robustness in regard to aerospace vehicle
design under uncertainty using high-fidelity analyses.
Reference 3 presents gradient-based robust design op-
timization results for a 3-D flexible wing based on
Euler CFD and FEM structural simulations and us-
ing the first-order second moment (FOSM) statistical
approximation. Reference 4 presents gradient-based,
reliability-based design optimization results for a 3-
D flexible wing based on Euler computational fluid
dynamics (CFD) and finite element method (FEM)
structural simulations and using the first-order relia-
bility method (FORM). Interested readers are referred
to references 3 and 4 and the sources cited therein for

more background on design under uncertainty.

Reference 5 discusses three different probabilistic
approaches with respect to accuracy, stability and
efficiency. The basic difference in these probabilis-
tic optimization approaches is in the details of how
the probabilistic constraints are satisfied. The robust
design approach, such as the Approximate Moment
Approach (AMA) in reference 5, evaluates the con-
straint sensitivity derivatives at the mean value. The
reliability-based design approaches, such as the Reli-
ability Index Approach (RIA) in reference 5 and the
Performance Measure Approach (PMA) in reference 5
evaluate the constraint sensitivities at the most prob-
able point (MPP) on the (constraint) failure surface.
Observations and results for AMA and PMA are given
in reference 5 for an algebraic example and a vehicle
side impact crash-worthiness example.

References 4 and 5 both make the case for favoring
the use of reliability-based design optimization ap-
proach. This choice also appears to be the preferred
practice in the various structural disciplines.® Per-
haps whenever real (physical) structures are involved
in Multidisciplinary Optimization (MDO), one must
resort to using reliability-based methods. However,
we agree with reference 1 that there is an uncertainty-
based design domain where robust design optimization
is valid and useful.

We present several reliability assessments of the 3-D
flexible wing robust design results given in reference 3.
We use conventional RTA, PMA and a new PMA/RIA
to evaluate the active constraints at the various proba-
bilistic robust design points; we compare these results
with the constraint values or the target constraint
probabilities specified in the robust design. In ad-
dition, we obtain reliability-based sensitivity deriva-
tives with respect to the design variable mean values
and show that they agree with finite difference values.
These derivatives eliminate the need for second-order
sensitivity derivatives to perform reliability-based de-
sign. However, inner-loop optimization problems must
be solved to find the MPP for each active constraint.

Uncertainty Methods

Only a brief outline of the methods used herein is
given. Details of our robust design method can be
found in reference 3 and the references cited therein.
Details of our reliability assessment methods can be
found in reference 7. All of the methods considerred
here are implemented using gradient-based optimiza-
tion techniques.

Robust Design (FOSM)

The first step in the FOSM analyses is to approxi-
mate the system output solutions of interest in Taylor
series form. These approximations are formed to es-
timate the output value for small deviations of the
input. Given input random variables b = {by,---,b,}
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with means b = {by,---,b,} and standard deviations
o ={o1,---,0n}, and system output function F, the
first-order Taylor series approximations are

_ " OF _
o, (b — bi) (1)

i=1

In an approximate moment approach (AMA), one
obtains expected values for the mean (first moment)
and variance (second moment) of the output function,
F; these values depend on the sensitivity derivatives
and input variances ¢;2. The mean of the output func-
tion F and variance 0% are approximated as

F = F(b) (2)
cp = 222;(2_502)

where the sensitivity derivatives, F/db;, are evalu-
ated at the mean values b. These sensitivity derivatives
are obtained using the automatic differentiation tool
ADIFOR.%°

For robust design, design variables are the mean
values b = {by, --b,} with b assumed statistically
independent and normally distributed with standard
deviations ¢;. The CFD state and structural equilib-
rium equation residuals R are deemed to be satisfied
at the mean values of the state variables ) and de-
sign variables b such that R(Q,b) = 0. The objective
function ¥ is cast in terms of expected values and be-
comes a function of F' and or. The system constraints
are cast into a probabilistic statement: the probabil-
ity that the constraints are satisfied is greater than
or equal to a desired or specified target probability;
that is, P(¢ < 0) > P;. This probability statement
is transformed to a constraint involving mean values
and standard deviations under the assumption that
the variables involved are normally distributed. The
robust optimization can be expressed as

U =V(F or;Q,b)
subject to (3)
9(F;Q,b) + kay <0

min

where k is the number of standard deviations o, that
the constraint ¢ must be displaced to achieve the de-
sired or specified target probability P;. For the FOSM
approximation, or and o, require first-order sensitiv-
ity derivatives following the form given in Egs. (2).

Reliability Assessment (FORM)

The constraint functions g in Eq. (3) are considered
as the limit-state equations in reliability analysis. If
they are relatively smooth, then it is expected that
FORM may provide adequate accuracy for reliability
assessment. In FORM, reliability analysis requires a

transformation from the original random design vari-
able b; to the standard normal random variable u;,

bi — b;

T

(4)

U; =

where b; and o; are the mean and standard deviation
of b;. Thus, the limit-state equations g(b, Q) = 0 can
be reformulated as g(u, @(u)) = 0, or in abbreviation,
g(u) = 0. Three variations of FORM are used here for
reliability assessment.

Reliability Index: Approach (RIA)

An efficient FORM method, the Hasofer-Lind-
Rackwitz-Fiessler (HL-RF) method!® 1! is used here
to analyze the failure probabilities of constraints at
the optimal designs of Eq. (3) for the various k values.
The rehability index 8* is then sought to be the short-
est distance from the origin to the surface of g(u) = 0.
This point on the surface is called the Most Probable
Point (MPP) of failure. Mathematically, this search is
expressed as a minimization problem,

B=vVuTu
subject to (5)
9(u) =0
which is the basis of the RIA.5
U

:

min
u
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]
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Fig. 3 Most Probable Point (MPP) in standard
normal space for two variables.

The HL-RF method used here is based on the obser-
vation that the final solution u* is in the same direction
as the gradient of a limit-state equation V,g(u), as
depicted in Fig. 3 for two random variables. This ob-
servation leads to a recursive equation,

ui+1 — ﬂi+1ni (6)

where n' is the unit direction of V,g(u’) and #+! is
the updated reliability index which is obtained as

=g+ Ap (7)
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and the Af is obtained as the first-order correction of
a nonzero g(u?),
9(u')

RO AL )
where the term, Vg, is evaluated at u’. The con-
vergence of the HL-RF method is achieved when the
root-mean-square of (u't? — u') and the absolute val-
ues of g(u't!l) and Ap are less than some prescribed
tolerances.

The convergence of Egs. (6) and (7) gives the relia-
bility index #* and the most probable failure point u*
which can be used to compute the failure probability
of the limit-state equation of concern as

Pr=Plg>0)=2(-p") )

where @ is the standard normal cumulative density
function.

The derivative of the probability of failure can be
calculated by differentiating the above equation with
respect to the mean value of any design variable as

dpP; 4o

where p(5*) is the Probability Density Function (PDF)
at 8" and the derivative, %,

sensitivity of the optimum solution

dg* g dg

.=~ (w2 .
The derivatives of the probability of failure with re-
spect to the standard deviations can be obtained in a
similar way. Note that in Eq. (11), V,¢ and g—bgl are
evaluated at the MPP.

It has been reported in the literature that the
RIA fails to converge for some problems.'* A PMA
method'* and an alternative RIA method that can
overcome such a deficiency are studied in the following
subsections.

Performance Measure Approach (PMA)

In PMA, the objective is to compute the first-order
probabilistic performance measure, g;. It is defined
as the offset of the performance, g(b, @), so that
the shortest distance between the limit-state equation
g(b,Q) — g, = 0 and the origin of the u-space is equal
to a given target reliability, ®(fp). This offset g5 can
also be found as the smallest value of ¢ that is tan-
gent to the target reliability surface represented by a
sphere constraint, ||u|| = B0 = VuTu. Mathematically,
the first-order probabilistic performance measure is ob-
tained as the objective of an optimization problem:

(10)

1s derived based on the
7,12,13 g

9(u)
subject to (12)

VT~ By =0

min
U

where the constraint requires the solution to achieve
the targeted reliability index. This optimization can
be viewed as inverse to that of Eq. (5).

The PMA method is also based on the observation
that the final solution u* is in the same direction as the
gradient of the limit-state equation V,g(u) as depicted
in Fig. 3 for two random variables. However, in PMA,
because the length of vector u* is limited to be the
given [y as prescribed in the constraint, a very simple
recursive formula can then be devised to find the u*:

't = gynt (13)

This algorithm is quite efficient. However, Choi and
Youn'* experienced convergence difficulty of Eq. (13)
when the limit-state equation exhibits concavity. They
then replace the current unit direction n’ in Eq. (13)
by the average of the last three consecutive ones.!* We
adopt the same procedure in our PMA.

In PMA, derivatives of the performance measure g,
are obtained from derivatives of the optimum solu-

tion” 1213 ag J 5
9p g
= = —= 14
db;  Ob; (14)
and . .
dfo Bo
where V,g¢ and % are evaluated at the MPP.

Alternate Algorithm for RIA (PRIA)

The key motivation of this new algorithm is the ob-
servation that the target fy of PMA is identical to the
reliability index §* of RIA if the performance measure
g, in PMA reaches zero value. To achieve a zero g, the
new algorithm uses Eq. (15) to estimate the amount
of the change in 8y needed to reduce the nonzero value
of g%; .

Ag= (V“ﬂﬂm (16)
0

Let Ag®™ = 0 — g, be the gap between zero and the
current value of g;. The change in target (o that
is required to achieve a zero gy is then estimated by

Eq. (16) as

The updated reliability index 7 + A will yield a new
g, that is closer to zero, at least in the first order sense.
Repeated use of Eq. (17) can guide the PMA search to
arrive at g5 = 0. In short, the new algorithm is derived
based on the PMA reported in the previous subsection.
Thus, this method can handle the concavity of the
limit-state equation as the underlying PMA can. The
new algorithm, called PMA-based RIA (PRIA) can be

summarized as follows:

Step 1: Start with an initial target 3* = 3, and initial
values of u® = ug.
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Step 2: Follow the PMA procedure” to obtain the con-
verged performance measure g;".

Step 3: Compute AB' by Eq. (17) which is evaluated
at u' and .

Step 4: Update fit! = 3 + AF'.

Step 5: Repeat steps 2-4 until Ag and g; achieve the
tolerances required for convergence.

The above algorithm is similar to the one presented
by Du and Chen.!® Both trace the MPP locus to locate
the B*. Nevertheless, the present method follows the
tangential direction of the MPP locus, whereas that of
reference 15 follows an extrapolated MPP locus. Note
that Eq. (17) is in the same form as Eq. (8); however,
Eq. (17) is only valid at the optimum of the PMA.
Thus, it represents a slope on the MPP locus, whereas
Eq. (8) does not.

3-D Flexible Wing Problems

The topic of this paper is the application of the three
reliability assessment methods to results of robust de-
sign for a 3-D flexible wing. Reliability assessments
are carried out for constraints that are near the limit
of feasibility. In this section, we describe the models
and computational tools used for the robust optimiza-
tions and reliability assessments. Then we present the
robust design cases to which the reliability assessments
are to be applied.

Robust Design (FOSM)

The 1nitial design point for the robust optimizations
were results of previous deterministic design optimiza-
tions. The trapezoidal-planform, semispan wing and
its associated shape parameters are shown in Fig. 4;
more details can be found in reference 3. The rela-
tive sizes of the skin thickness, the web thicknesses,
and the truss cross section areas are fixed within each
structural zone depicted in Fig. 4. A scaling factor
I, is assigned to change the thickness and area of all
structural elements in zone n.

In the two-design-variable (2DV) examples, the
wing sections are held fixed and vary linearly from an
NACA 0012 at the root to an NACA 0008 at the tip,
which is then rounded. The size of the structural ele-
ments is also held fixed in the 2DV examples. The two
planform design variables are the tip setback z; and
the tip chord ¢;. Although these two planform vari-
ables are not typically subject to significant variance,
they are ascribed some uncertainty here to illustrate
the techniques. For the 2DV cases shown here, a co-
efficient of variation %—: = 0.01 was arbitrarily chosen
for both DVs.

In the four-design-variable (4DV) examples, the un-
certain design variables were determined by examining
both sensitivity derivatives and reasonable expected
variances of the available parameters. As can be seen

from Eq. (2), the size of an output function variance
depends on the size of the input parameter variances
weighted by the square of the output function sensitiv-
ity derivatives with respect to those input parameters.
For reasonable input coefficients of variation of 0.1%,
the larger sensitivity derivatives with respect to root
airfoil thickness ¢, and camber z,. appeared to provide
a more realistic representation of practical uncertainty
than the sensitivity derivative with respect to other
shape parameters. Similarly, the sensitivity deriva-
tives for the two inboard structural sizing parameters
are larger than the others. The four parameters cho-
sen as uncertain design variables were the root airfoil
section maximum thickness #,, the root airfoil section
maximum camber z,, and the structural sizing fac-
tors for the two inboard regions, I'y and I's, as shown
in Fig. 4. For the 4DV cases herein, a coefficient of
variation, 2= = 0.001, was chosen for all four design

A
variables.
\\
\ N,
Cr=
(=20") Fl I, r, Xt
NN
1—‘5
Cy
T L
x
Y —

z —&—
I’* Licr=1—>l

Fig. 4
tion.

Wing geometry and sizing parameteriza-

The objective function to be minimized is the nega-
tive of the square of the lift-to-drag ratio, —(L/D)?, for
My = 0.8, = 1°, representative of cruise conditions
for a transport aircraft. Coupled solution-dependent
and geometric constraints were imposed. The solution-
dependent constraints were

e lower limit on the difference between the total lift
and the structural weight, L — W, where L =
CL * S * Qoo

e upper limit on compliance, the work done by the
aerodynamic loads to deflect the structure, V =

§ pu - nds

e upper limit on pitching moment, Cy,, in lieu of a
trim constraint

The purely geometric constraints were
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e minimum leading edge radius, in lieu of a manu-
facturing requirement

e side constraints (bounds) on the active design
variables

State variables for aerodynamics and structures
were determined from the fluid-flow conservation laws
(Euler equations) and the structural equilibrium con-
ditions (for FEM), respectively.

In the present examples, the objective function is
taken as —(L/D)? and the FOSM approximation to
the variance appears in the robust version. Thus when
the FOSM approximation of the standard deviation is
used in the constraint, the robust optimization prob-
lem is given as

min V= —(L/D)? - Z <3(§711D)0i>
subject to ) (18)

Note that the robust optimization problem reduces to
the conventional or deterministic problem when the
standard deviations of the inputs o; are zero.

Computational Tools

A collection of existing codes was used to perform
the computations in this reliability assessment proce-
dure. These codes and data transfers are executed
by a separate driver code and scripts. Each code
runs independently (some simultaneously on separate
processors) and the required data transfers between
them are accomplished via data files. The aerody-
namic flow analysis code used for this study is a ver-
sion of the CFL3D code'® used in the Euler mode.
The gradient version of this code, which was used
for aerodynamic sensitivity analysis, was generated by
an unconventional application!” of the automatic dif-
ferentiation code ADIFOR®® to produce a relatively
efficient, direct mode, gradient analysis code.'® The
surface geometry was generated based on a code that
uses the Rapid Aircraft Parameterization Input Design
(RAPID) technique developed by Smith et al.!? This
code was also preprocessed with ADIFOR to generate
a code capable of producing sensitivity derivatives as
well. A version of the CSCMDO?? code was used to
generate the CFD volume mesh needed by the flow
analysis code. The associated grid sensitivity deriva-
tives needed by the flow sensitivity analysis were gen-
erated with an automatically differentiated version of
CSCMDO.?' The 45,000 grid point baseline volume
mesh required by CSCMDO and used in the present
flexible wing examples was obtained with the Gridgen
code. The wing surface portion of the mesh is shown

CFD mesh

C-0 topology
73x25x25 volume
49x25 on the wing

FEM mesh
3251 elements:
2141 CST
1110 truss

583 nodes

Fig. 5 CFD and FEM computational meshes.

in Fig. 5. This mesh is admittedly quite coarse by cur-
rent CFD analysis standards. The structural analysis
code?? used to compute the deflection of the elastic
wing was a generic finite element code. The flexible
structure for the wing shown in Fig. 5 was discretized
by 583 nodes; there were 2,141 constant-strain trian-
gle (CST) elements and 1,110 truss elements. Zone
boundaries for the design variables controlling element
size are also shown in Fig. 5. Because the elastic defor-
mation was assumed to be small, linear elasticity was
deemed to be appropriate. The structural sensitivity
equations were derived based on the direct differentia-
tion method. The sensitivity of the aerodynamic forces
appears as a term on the right-hand side (RHS) of the
deflection sensitivity equations. The derivative of the
stiffness matrix in these sensitivity equations was also
generated??® by using the ADIFOR®? technique. The
coefficient matrix of the structural sensitivity equa-
tions was identical to that of the structural equations.
Consequently, these structural sensitivity equations
were solved efficiently by backward substitution with
a different term on the RHS for each sensitivity. At
the wing surface, i.e., the interface where aerodynamic
load and structural deflection information is trans-
ferred, surface nodes of the FEM structural model were
assumed to be a subset of the CFD aerodynamic sur-
face mesh points for this application (see Fig. 5). This
lack of generality allowed for simplifications in the data
transfers; although it is an important issue, 1t was not
deemed crucial for these robust optimization and reli-
ability assessment demonstrations.

2DV Robust Results

Table 1 and Fig. 6 present the results for the 2DV de-
terministic optimization and robust optimizations for
several values of k. An increase of the parameter &
represents an increase in the specified target probabil-
ity and therefore the probability that the constraints
are met. Assuming a normal Gaussian distribution
of the output variables, values of £ = 1, 2, 3, and
4 would represent target probabilities of P, = 84.13,
97.73, 99.87, and 99.998%, respectively. The mean
values of the constraint functions g are shown along
with the robust constraint values ¢ in Table 1. The
mean values of the constraints are shown as bars in
Fig. 6. The circles represent the contribution of the
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Table 1 2DV robust design problem results.
Deter- Robust Robust Robust Robust
ministic solution, solution, solution, solution,
solution k=1 k=2 k=3 k=4
Design variable inputs
ct 1.130 1.131 1.158 1.117 1.060
Xy 1.940 1.917 1.932 1.838 1.686
Responses
obj -10.0 -9.94 -9.90 -9.82 -9.56
g+koy g g+ ko g g +koy g g +koy g
g(L —W) | -0.0007 | 0.000127 -0.0176 | 0.000032 -0.0357 | -0.000225 -0.0503 | -0.00607 -0.0669
9(Cm) -0.920 -0.915  -0.921 -0.924  -0.936 -0.895  -0.914 -0.858  -0.886
g(V) -0.0966 -0.0630 -0.0802 -0.0257 -0.0603 0.00569 -0.0525 | 0.00133 -0.0535

uncertainty to the robust constraint functions. Ac-
tive constraint values are those for which the circles
lie near end of the bars. That is, in Fig. 6, (L — W)
is active for all values of & whereas g(V) is active only
for £k = 3 and 4. Mean values of the constraint func-
tion that are greater (less negative) than the values at
the circles would indicate violated robust constraints;
that is, the probability of those constraints being sat-
isfied would be less than the target probability. The
changes due to seemingly small uncertainty produce
substantial changes in the constraints, which must be
accounted for in the optimization.

g(L » W) g(cm)

-0.05

-0.1
Q L i
E=
<
>
5 L
g
W b
=]
Q
® i
Fig. 6 2DV robust optimization results: mean

value of constraints.

4DV Robust Results

Table 2 and Fig. 7 present the results for the 4DV
deterministic optimization and robust optimizations?
in the same manner as that described above for the
2DV cases. For all of the 4DV cases, £ = 1, 2, and
3, the payload and pitching moment constraints are
active, but the compliance constraint is not. For the
k = 2 case, although the pitching moment constraint

is active, it is not tight. As in the 2DV cases, the
changes due to seemingly small uncertainty produce
substantial changes in the constraints, which must be
accounted for in the optimization. The mean values
of the constraints are shown in Fig. 7; and, as in
Fig. 6, the circles represent the contribution of the
uncertainty to the robust constraint functions.

gC,) 3V)

(L-W)

-0.01

-0.02

o
=
|

)
=
=

Constraint value

-0.05

-0.06

-0.07

Fig. 7 4DV robust optimization results:
value of constraints.

mean

Sample Results & Discussion
Reliability Assessment of Robust Design (FORM)

Reliability assessments of the robust design results
for the 3-D flexible wing described previously were per-
formed using three previously discussed approaches
based on FORM: the Reliability Index Approach
(RTA), the Performance Measure Approach (PMA),
and the PMA-based RIA (PRIA). These reliability
assessments were performed for the constraints that
were active in the robust designs. Results correspond-
ing to k = 1, 2, 3, and 4 for the 2DV examples are
shown in Table 3. Similarly, results corresponding to

7 0oF 11



Table 2 4DV robust design problem results.

Deter- Robust Robust Robust
ministic solution, solution, solution,
solution k=1 k=2 k=3

Design variable inputs
t, 0.778 0.774 0.774 0.773
Zp 1.138 1.139 1.139 1.14
ry 4.075 4.05 4.009 3.984
Iy 3.7 3.656 3.563 3.528
Responses
obj -19.1 -19 -18.95 -18.93

g +koy g g+ koy g g+koy g
g(L — W) | -0.00077 | 0.000048  -0.0107 0.00031 -0.0211 | -0.000745 -0.0328
9(Cm) -0.00032 | -0.000028 -0.00773 | —0.00501* -0.0203 | 0.000449 -0.0225
9(V) -0.0666 -0.0531 -0.062 -0.0422 -0.0601 -0.0262 -0.0532
*

constraint active, but not tight

k =1, 2, 3 for the 4DV examples are shown in Ta-
ble 4. In Tables 3 and 4, the first column indicates the
constraint for which the reliability assessments were
performed. The second column shows the PMA result
g, at the robust design point. The third column is the
final robust constraint value obtained from the robust
design process. The PMA assessment of the robust de-
sign compares constraint values in these two columns.
The fourth and fifth columns are the value of k& and
its corresponding target probability P; in the robust
design. The remaining columns are for RIA method
results. The sixth and seventh columns, under the
heading “HL-RF “, show the reliability index £ and its
assoclated probability of feasibility (1 — P¢) from the
HL-RF method at the robust design point. The last
two columns, under the heading “PRIA“, show the
same results using the PMA-based RIA method. The
RIA assessments of the robust design compare g with
k and the probability of feasibility with robust design
target probabilities. At absolute convergence the two
RIA methods should provide identical results; how-
ever, the forms of the convergence criteria are different
and the tolerances are finite for the results presented.
In the following two subsections we will discuss the re-
sults shown in the tables for the 2DV and 4DV cases.

Two-design-variable case results

For the robust designs, the payload constraint is
active in all the 2DV cases and the compliance con-
straint becomes active for the £ = 3 and k£ = 4 cases
as shown in Fig. 6. The reliability index 3 is obtained
for both constraints at each value of k using both RIA
methods. Therefore, as previously indicated, an opti-
mization problem must be solved to find the MPP for
each active constraint. The reliability index 8 is thus
obtained for both constraints at the design point re-
sulting from the robust design process for each £ and
compared with the robust design target values of prob-
ability P; as given by k. These results are shown in

Table 3 for the 2DV examples. The results indicate
that the robust design apparently deviates from the
desired probability as k increases; that is, as the de-
sired reliability increases, the RIA consistently shows
a higher obtained probability. The PMA assessment
performed at the design point that resulted from the
robust design process gives a value of g for a target
reliability index corresponding to the k£ used in the ro-
bust design. The result can be compared with the final
robust constraint values for the robust design.

The PMA results are qualitatively consistent with
the PRIA results in that when the PRIA indicates that
the robust design results have a reliability greater than
that corresponding to the input k, the PMA gives a
negative limit-state value. Similar consistency is also
seen for the PMA and HL-RF RIA results except for
the k& = 1 case. Hovever, for this case, the RIA 3 values
are very similar and close to k£ = 1. Table 3 shows that
the RIA values 3 for each case are very similar, but not
equal - probably due to finite convergence tolerances.

Four-design-variable case results

Fig. 7 shows that both the payload constraint g(I —
W) and the pitching moment constraint g(C,,) are
active for all 4DV robust design cases. However, note
that the pitching moment constraint g(Cl,) is not tight
for £ = 2 in the 4DV example. Therefore, the re-
liability index @ from the RIA and PRIA reliability
assessments for g(Cly,) at that design point is not ex-
pected to match the input k& for g(Cp,) but to be
somewhat larger. As with the 2DV results, note that
the PMA and RIA reliability assessment results are
qualitatively consistent in that when the RIA indicates
that the robust design results have a reliability greater
than the reliability associated with the input &, the
PMA gives a negative limit-state value. Conversely,
the limit-state value from PMA is positive when the
reliability index from PRIA 1is less than the input k.
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Table 3 Reliability assessment of 2DV robust design results.

PMA Robust Design RIA
HL-RF PRIA
Constraint 9, g+ko, k P, I} 1— P 15 1— P
g(L—W) 0.000358 || 0.000127 1 .8413 | 1.021 .8465 | 0.987 .8383
g(L—W) -0.000200 || 0.000032 2 9773 | 2.011 9779 | 2.001 9773
g(L—W) -0.00350 || 0.000225 3 .9987 || 3.578 9998 | 3.244 .9994
g(L—W) -0.0146 || -0.00607 4 .9999 || 5.048 1. ] 5.058 1.
g(V) -0.00793 || -0.00569 3 9987 || 3.215 29993 | 3.578 .9998
g(V) -0.00733 || -0.00133 4 .9999 || 4.667 1. | 4.664 1.
Table 4 Reliability assessment of 4DV robust design results.
PMA Robust Design RIA
HL-RF PRIA

Constraint 9, g+ ko, k P, g 1— P 15 1— P

(L W) -0.00219 || 0.00005 1 .8413 || 1.206 .8862 | 1.199 .8848

g(L—W) 0.00122 || 0.00031 2 9773 || 1.879 9699 | 1.859 9685
g(L W) 0.000173 || -0.00075 3 .9987 || 2.983 9986 | 2.939 .9984
9(Cn) -0.000192 || -0.00003 1 .8413 || 1.038 .8504 | 1.050 .8531
9(Cn) -0.00873 -0.0050 2* 9773 || 3.471 9997 | 3.586 .9998
9(Cn) -0.00695 || 0.00045 3 9987 || 4.164 1. | 4.165 1.
*

constraint active, but not tight

Discussion of reliability assessment results

The agreement between the robust design results
and the reliability assessments degrades as the desired
probability increases, which can be attributed to two
factors. First, the term in the robust design constraint
that determines the probability uses only information
at the mean values of the random design variables to
approximate a condition at the limit-state boundary.
Second, although the random input variables are char-
acterized by a normal distribution, the output func-
tions are nonlinear; thus, there is no guarantee that the
output functions are normally distributed. However,
both the robust design and the reliability assessments
are based on an assumption that the limit-state func-
tion 1s normally distributed. The extent to which these
factors apply is also probably problem dependent.

Timing Comparisons

Since, for this problem, the computational time of
the reliability assessment algorithms is negligible rela-
tive to that of the CFD and FEM analyses they require
as input, the relative efficiency of the various reliabil-
ity assessment methods can be made in terms of the
number of calls to the function and derivative routines.
That data is shown in Table 5 for several cases. The
HL-RF RIA method and the PMA method require the
same number of analyses for most of the cases. It is not
surprising that the PMA-based RIA method requires
more than the PMA since it is essentially a sequence of
PMA analyses. From these results the case is not well
made for use of the PRIA since it is consistently more
expensive than the HL-RF method and the HL-RF did

not exhibit any convergence difficulty.

Sensitivity Derivatives from Reliability
Assessment

As a part of this reliability assessment, the sensi-
tivity derivatives of the reliability information with
respect to the mean values of the random design vari-
ables b; are also obtained. These sensitivities are re-
quired for a gradient-based, reliability-based optimiza-
tion procedure for which statements of the constraint
appear as fBy(b) > Biarger for the RIA approaches, or
g, < 0 for the PMA approach. The sensitivity deriva-
tives of the reliability information # and g; require
no further differentiation than the first derivatives re-
quired for the reliability assessment. Their use as
constraints does not require higher order derivatives as
the Robust Optimization does. Sample reliability sen-
sitivity derivative comparisons are shown in Tables 6
and 7. The first column, labeled “DV”, indicates the
variable with respect to which the function is differ-
entiated. The second and third columns identify the
reliability assessment case by the constraint and de-
sired reliability. The sensitivity results for the three
reliability assessment methods are in the subsequent
columns. The tables show the analytic sensitivity
derivatives of the reliability index 3, in the case of
the two RIA methods, and the limit-state value g7 in
the case of the PMA. The tables also show the ra-
tio of the analytic result to the derivative obtained
by finite differences of two assessments for which the
design point was perturbed slightly by the indepen-
dent variable. Derivative results obtained by using the
two RIA methods are found to agree very well. The
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Table 5 Timing comparisons of reliability assessment.

HL-RF PMA PRIA
nDV  Constraint k& | Nfunc Nderiv | Nfunc Nderiv | Nfunc Nderiv
2 g(L —W) 1 3 3 3 3 6 5
2 g(L-W) 2 3 3 3 3 6 5
2 g(L—-W) 3 3 3 3 3 6 5
2 g(L—-W) 4 5 5 3 3 10 8
2 9(V) 3 3 3 3 3 9 7
2 9(V) 4 3 3 10 8
4 g(L —W) 1 3 3 3 3 6 )
4 g(L-W) 3 3 3 3 3 6 )
4 9(Cm) 1 4 4 3 3 6 )
4 9(Cm) 2 3 3 3 3 6 5
4 9(Cm) 3 3 3 3 3 9 7

agreement between the finite difference results and the
analytic results i1s not very good for the 2DV cases
shown in Table 6. For the 4DV cases in Table 7, how-
ever, the agreement is much better i.e., the ratio is
closer to 1.000. Some of the inaccuracy in the com-
parison can be attributed to the constraint tolerance
specified in the RIA reliability assessment. The dagger
symbols in the table indicate that a few of the finite
difference values could not be obtained for compari-
son for the HL-RF RIA method because the RIA at
the perturbed point failed to converge for at least one
side of the central difference. These results indicate
that the derivatives of the PMA and PRIA reliability
assessment methods are suitable for use in a gradient-
based design optimization process. The derivatives
from HL-RF method are suitable when they are ob-
tainable; but, the lack of assurance of convergence
renders the method undesirable. Improvements to the
HL-RF method has been suggested to correct the con-
vergence problem; see, for example, reference 24.

Concluding Remarks

Assessment results from the three FORM-based re-
liability assessment methods were discussed and used
to assess results from several cases of robust optimiza-
tion of a 3-D flexible wing. The three methods were
qualitatively consistent for all the cases to which they
were applied. Results from the two RIA methods were
numerically very similar for all cases. The assessments
showed good agreement with the target probabilities
of the robust optimization when k was less than about
3. The analytical derivatives of the RIA methods were
also nearly identical for all cases and consistent with
the PMA method. The PMA and HL-RF methods
required nearly the same computational time for all
The PMA-based RIA method was more com-
putationally expensive; but, it showed no tendency to
fail to converge as the HL-RF method did. The PMA
and PRIA methods seem more suited for incorporation
into a reliability-based design optimization (RBDO)
process. The computational expense of RBDO rela-

cases.

tive to robust design will likely be problem dependent.
Robust optimization requires second-order sensitivity
derivatives; hovever, RBDO requires inner loop opti-
mizations to determine the MPP for active constraints.
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